参北斗"催生新动能 第三届北斗规模应用国际峰会观察 从"天边"到"身边"、从"星辰"到"指 尖"……10月24日至25日,第三届北斗规 模应用国际峰会在湖南省株洲市举行,此次 峰会以"同世界·共北斗"为主题,充分展示 了北斗新技术、新应用、新产业。

今年正值北斗系统工程立项30年,北 三号全球卫星导航系统的最后两颗卫星 也于日前送入太空。记者在峰会现场了解 到,当前,北斗规模应用已进入市场化、产业 化、国际化发展的关键阶段,"参北斗"正在 千行百小不断催生新动能。

特色功能加快落地

国网株洲供电公司供电服务指挥中心, 电脑屏幕上显示着密密麻麻的配电线路和 自动化终端。其中,90多个终端设备地处 偏远山区,过去存在网络信号不稳定和数据 传输质量不佳等问题,"掉线"时一旦出现故 障,就需要工人前往现场排查。

国网株洲供电公司一级高级专家陈成 功说,为此,公司研发了"4G+北斗短报文" 双模通信模块,利用短报文不受地理位置限

10月24日,参观者在第三届北 应用国际峰会场景示范区参观

新华社记者 戴斌 摄

10月24日,参观者在第三届北斗规模 应用国际峰会场景示范区体验一款农机驾 新华社记者 戴斌 摄

这是10月24日拍摄的第三届北斗规模应用国际峰会室外展示区(无人机照片)。

制、露天情况下通信无盲区的优势,实现自 动化终端"全天候"在线,30秒就能完成故 障排查、处理。

短报文服务,是北斗三号系统的"独门 绝技"。中国时空信息集团有限公司副总经 理王珏说,近期,北斗三号短报文公众应用 商用试验即将正式启动,未来的目标是将北 斗短报文公众服务发展成为消费类电子产

高精度定位是北斗的另一大特色。住 房和城乡建设部信息中心主任于静说,北斗 精准时空数据已在工程建设、燃气安全管 理、大型桥梁安全监测等领域得到广泛应 用,未来前景巨大。

北斗系统服务及相关产品还加快在海 外落地。工业和信息化部电子信息司二级巡 视员吴国纲说,具有北斗功能的移动终端在 全球移动终端的覆盖率超过50%,进入了民 航、海事等10多个国际组织的相关标准。

多种技术加快融合

在株洲职教城,不设固定线路、站点的 "云尚巴士"于近日试运行。乘客使用小程序 即可查看巴士位置,并"网约"个性化出行服 务,选择区域内近100个"虚拟站点"上下车。

中车电动基础技术与试验研究院网联 技术主管熊刚说,"云尚巴士"最核心的技术 支撑是北斗系统,同时结合惯性导航、车联 网、大数据算法等技术,实现对巴士实时位置 跟踪和精准调度,打造新型公交运营模式。

在此次峰会上,融合创新成为一个关键 词。记者感受到,北斗系统与大数据、云计 算、物联网、人工智能等一系列新兴技术的 有机融合,带动多传感器融合、多系统融合、 天地基融合、室内外融合,一批跨界融合的 创新联合体加速壮大。

记者在场景示范区看到,从智慧农机到 共享单车,从测绘装备到手持通信终端,"北 斗+"成为各类产品和服务的显著标签,低 轨卫星、惯性导航、视觉识别等技术推动"通 (信)导(航)遥(感)"一体化发展。

长沙金维集成电路股份有限公司董事 长刘彦说,随着"智能时代"来临,"通导遥"与 大数据、人工智能技术紧密结合,作为时空信 息基础设施的北斗系统将体现更大价值。

新兴业态加快拓展

随着工作人员下达运行指令,方舟40 无人机载着快递包裹腾空而起,飞往物流集 散中心。这款无人机应用机载视觉模块、毫

米波雷达模块,配合北斗高精度定位,降落 精度可达到厘米级,让高效便捷的"空中快 递"成为现实。

新华社记者 程济安 摄

这是株洲"无人机+北斗"低空综合服务 中心打造的低空航线。目前,该中心已启用 21条低空航线,覆盖医疗运输、快递配送、农 特产品运输、巡检及应急物资运输等场景。

近年来,低空经济、无人驾驶等"风口产 业"不断获得北斗加持。记者了解到,峰会 上公布的第十三届中国创新创业大赛北斗 应用专业赛获奖名单和十大北斗应用场景 典型案例中,均包含了大量新兴业态。

"北斗技术在低空经济领域应用前景》 阔,在提高低空空域协同运行效率、提高通 航服务保障水平等方面大有可为,也将推动 低空空域改革进程,释放产业链发展新活 力。"湖南中电星河电子有限公司副总经理 贺智轶说。

北京北斗星通导航技术股份有限公 司副总裁黄磊认为,卫星导航正在从以测 量测绘为代表的传统应用,向无人机、智 能驾驶、机器人等新兴产业和传统产业 "智改数转"两个方向拓展,从而加速形成 新质生产力

新华社记者 白田田 刘芳洲 谢奔

提速约四成!

学家探秘远古昆虫的"飞行竞赛"

早期古蝉(上)与晚期古蝉(下)翅膀形态对比。

中国科学院南古所供图

新华社南京10月28日电(记者王珏 玢)记者从中国科学院南京地质古生物研 究所获悉,通过对中生代古蝉的形态特征 进行系统分析,研究人员发现,约1.5亿年 前古蝉诵讨新老类群的演替,实现了飞行 能力的显著提升。

这一研究由中国科学院南古所学者领 衔的国际古生物团队完成,向公众生动展 示出一场在远古天空悄然开展的"飞行竞 寨"

蝉俗称知了。在距今约2.6亿至1亿年 前,古蝉总科是具有代表性的树栖昆虫。它 们在这一时期非常繁盛,保存了大量的化石, 并且与现代蝉类也有密切的亲缘关系,是研 究昆虫飞行能力演化的理想对象。

此次,研究团队建立了古蝉的综合形 态特征数据库,系统重建了古蝉的宏演化 历史。研究团队发现,在约1.5亿年前的侏 罗纪晚期,古蝉类群经历了一次显著的演 替事件。早期古蝉具有近似椭圆形的前 翅、较大的后翅和较小的中胸,而晚期古蝉 则演化出近似三角形的前翅、较小的后翅 和较大的中胸。这种形态变化使晚期古蝉 的飞行能力显著提升。

我们发现,晚期古蝉的翅载荷提高了

中生代"飞行竞赛"生态复原图 中国科学院南古所 杨定华绘制

92%,飞行速度提升了39%,飞行肌肉占比 提高了19%,显示出飞行灵活度和效率均有显著提高。"研究论文第一作者、中国科 学院南古所博士许春鹏说。

领导此项研究的中国科学院南古所研 究员王博介绍,之所以出现这样的"飞行竞 赛",很可能是由于当时空中出现了新的捕 食者。在约1.55亿年前到约1.35亿年前, 早期鸟类迅速繁盛起来,并成为森林中强 有力的"捕食家"。早期鸟类多以昆虫为 食,体形硕大的古蝉正是理想的食物来 源。这一压力促进了古蝉类群的演替。

"这一研究为定量计算远古昆虫的飞 行能力提供了新思路、新方法,也为理解飞 行生物的演化历史提供了重要线索。"王博

相关成果已于近日发表在国际学术刊 物《科学进展》上。