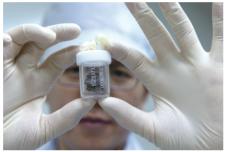
探访月球样品实验 中国科学院国家天文台研究 员、嫦娥六号任务工程副总设计师 李春来在月球样品室告诉记者,截 至10月10日,嫦娥六号月球样品 中表取样品处理已告一段落,钻取

> 右才能处理完毕。 "嫦娥六号月球样品6月25日 返回地球,第二天就进入月球样品 实验室,经过四五天的解封,科研 人员见到了样品真容。"李春来说, 每天有30-40名科研人员加班加 点开展工作。

> 科研人员利用月球背面的表 取样品开展研究分析,揭示了嫦娥 六号月球样品的矿物与化学成分 等特征,相关成果日前已经发表。

> 据李春来介绍,嫦娥六号月 壤的全岩成分是低钛、低铝、低钾 的玄武岩,化学成分跟嫦娥五号 不一样。玄武岩里面很少有橄榄 石,月背样品很大程度上不同于



9月24日,中国科学院国家天文台研究员、嫦娥六号任务工程副总设计师李春来在月球样品实验室

新华社记者 金立旺 摄

9月24日,中国科学院国家天文台研 究员、嫦娥六号任务工程副总设计师李春 来在月球样品实验室处理嫦娥六号月球 新华社记者 金立旺 摄

9月24日,科研人员在月球样品实验室 展示嫦娥六号月球样品

新华社记者 金立旺 摄

这是9月24日在月球样品实验室拍摄的 月球样品。

新华社记者 金立旺 摄

这是9月24日在月球样品实验室拍摄的 月球样品。

新华社记者 金立旺 摄

人工智能助力破解蛋白质神奇结构密码

2024年诺贝尔化学奖成果解读

数十年前,预测蛋白质三维结构,以及 设计全新蛋白质为人类所用,被认为是一个 不可能实现的梦想

"30年前,如果能用实验设备解析一种 蛋白质结构就完全可以发表一篇博士论文, 因为那是一件极为困难的事情,"诺贝尔化 学委员会评委邹晓冬9日接受新华社记者 采访时说,得益于今年诺贝尔化学奖获奖成 果,人们现在可以设计蛋白质,还可通过人 工智能预测蛋白质三维结构,"这是一个非 常大的革命"。

曾经不可实现的梦想

蛋白质是维持生命的重要大分子。它 们是构成骨骼、皮肤、头发等组织的基石,是 驱动肌肉的马达,是读取、复制和修复脱氧 核糖核酸(DNA)的"机器",是让大脑中神 经元随时准备运转的"泵",是促进机体免疫 反应的抗体,是细胞向外界传递信息的传感 器,是调节人体内所有细胞的激素。

蛋白质通常由20种不同的氨基酸组 在蛋白质中,氨基酸以长链连接在一 起,折叠起来形成独特的三维结构,这对蛋 白质的功能至关重要。要了解生命如何运 作,首先就需要了解蛋白质的形状和结构。

自19世纪以来,化学家就已了解蛋白 质对生命过程的重要性。但直到20世纪50 年代,随着研究工具精度的提高,研究人员 才开始借助仪器解析蛋白质三维结构。到 20世纪70年代,研究人员已经认识到,决定 蛋白质如何折叠的相关信息蕴含在组成蛋 白质的氨基酸序列中。从那时起,研究人员 -直怀有一个梦想,即试图根据已知的氨基 酸序列预测蛋白质三维结构,但这非常困 难,甚至一度被认为是不可能实现的梦想。

"阿尔法围棋"设计者破解蛋白质 结构之谜

然而,就在4年前,出现了一个惊人的

10月9日,在瑞典斯德哥尔摩举行的2024年诺贝尔化学奖公布现场,屏幕显示奖项得主 美国华盛顿大学的戴维·贝克、英国伦敦谷歌旗下人工智能公司"深层思维"的德米斯·哈萨 比斯和约翰·江珀

瑞典皇家科学院9日宣布,将2024年诺贝尔化学奖授予三名科学家,以表彰他们在蛋白 质设计和蛋白质结构预测领域作出的贡献。 新华社记者 彭子洋 摄

突破。2020年,谷歌旗下"深层思维"公司 的德米斯·哈萨比斯和约翰·江珀提出名为 "阿尔法折叠2"的人工智能模型。

哈萨比斯是来自英国的神经学家和企 业家,他是"深层思维"公司的联合创始人和 首席执行官。他从4岁开始下国际象棋, 2009年获得英国伦敦大学学院认知神经科 学博士学位。他还曾领衔开发"深层思维" 公司的"阿尔法围棋"程序,该程序在复杂的 围棋游戏中击败世界冠军、韩国围棋选手李 世石。

江珀则是"深层思维"公司高级研究科

学家,早年在美国芝加哥大学获得理论化学 博士学位,研究方向为使用机器学习模拟蛋 白质折叠。2021年,《自然》杂志曾将他列 入年度"十大科学人物"

"阿尔法折叠2"模型曾赢得有着生物 计算领域"奥运会"之称的"蛋白质结构预测 关键评估(CASP)"比赛,并成为第一个能 准确预测蛋白质三维结构的机器学习模型。

"阿尔法折叠2"模型成功解决了科学 家苦苦思索了数十年的难题--从氨基酸 序列预测蛋白质结构,它能够预测几乎所有 已知的2亿种蛋白质的结构。

自问世以来,"阿尔法折叠2"已被用于 海量科学应用中,例如人们用它应对抗生素 耐药性、寻找疟疾等疾病的新疗法等。"阿尔 法折叠2"极大缩短了人工确定蛋白质结构 的时间,展示了人工智能对于科学发现的影 响。此外,这项研究将有助于人们更好地了 解疾病,并能加速新靶向药物开发。到今年 10月,已有来自大约190个国家的200多万 人使用了"阿尔法折叠2"程序。

设计全新蛋白质开辟无限可能

自然界中的蛋白质种类有限,研究人 员希望创建出新的蛋白质种类,使其执行 诸如分解有害物质或作为化学制造业工具 等功能。该领域自20世纪90年代末兴起, 美国华盛顿大学西雅图分校教授戴维•贝 克在该领域取得突破。他开发的名为Rosetta的软件成功构建出不是天然存在的 全新蛋白质。

贝克的研究团队首先提出一个全新结 构的蛋白质,然后利用Rosetta计算哪种 氨基酸序列可以生成所需的蛋白质。为了 验证该软件的成功率,贝克的研究小组将 软件建议的氨基酸序列基因引入细菌,这 些细菌生产了所需的蛋白质。然后,他们 利用X射线晶体学确认了蛋白质结构与他 们的设计几乎完全符合。该成果于2003 年发表

此后,他的研究小组不断创造出一个又 个具有新功能的蛋白质,可用于催生新的 纳米材料、靶向药物、疫苗研发、微型传感器 以及更环保的化学工业等,为实现人类福祉 开辟了无限可能。

贝克当天接受电话采访时说,他获得这 ·殊荣是站在了巨人的肩膀上。蛋白质结 构预测真正凸显了人工智能的力量,使人们 得以将人工智能方法应用于蛋白质设计,大 大提高了设计的能力和准确性。

新华社记者 郭爽